In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:
Теория диофантовых приближений — раздел теории чисел, изучающий приближения вещественных чисел рациональными; назван именем Диофанта Александрийского.
Первой задачей был вопрос, насколько хорошо вещественное число может быть приближено рациональными числами. Для этой задачи рациональное число a/b является «хорошим» приближением вещественного числа α, если абсолютное значение разности a/b и α не может быть уменьшено, если заменить a/b другой рациональной дробью с меньшим знаменателем. Задача была решена в XVIII столетии посредством непрерывных дробей.
Если известны «лучшие» приближения заданного числа, главной задачей области является поиск точных верхней и нижней границ вышеупомянутой разности, выраженной как функция от знаменателя.
Похоже, границы зависят от природы вещественных чисел — нижняя граница приближения рациональных чисел другим рациональным числом больше, чем нижняя граница алгебраических чисел, которая сама больше нижней границы для вещественных чисел. Таким образом, вещественные числа, которые могут быть лучше приближены, чем граница для алгебраических чисел, это определённо трансцендентные числа. Это дало возможность Лиувиллю в 1844 году получить первое явно заданное трансцендентное число. Позднее с помощью аналогичного метода было доказано, что и являются трансцендентными.
Таким образом, диофантовы приближения и теория трансцендентных чисел являются очень близкими областями и имеют много общих теорем и методов. Диофантовы приближения также имеют важные приложения в изучении диофантовых уравнений.